


Lecture overview

o Monte Carlo simulation
o Stochastic gradients
o MC gradient estimators

o Bias and variance in gradients
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How it started

John von Neumann Stanislav Ulam Manhattan project
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Applications

o High-energy Physics
o Finance

o All sort of simulations
o Machine Learning

o And of course Deep Learning
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Motivation

o We are often interested to compute quantities (statistics) on random variables
- The average response to a drug

> Or the probability of a particular sum when throwing two dice
> Or the average reconstructions in my VAE given an input

o These statistics often intractable to compute
- Cannot derive a perfect drug response model (too complex)

- Cannot enumerate all possible dice combinations (too lazy)
- Computationally infeasible (intractable integrals)
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Total number of states: 36
https://www.goldsim.com/Web/Introduction/MonteCarlo/
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https://www.goldsim.com/Web/Introduction/MonteCarlo/

Monte Carlo integration

o Use random sampling instead of analytical computation
> A single random sample might not be enough

- Many random samples can give us a reliable quantification

o E.g by throwing dice many times we can obtain a histogram of probabilities
for each possible sum
> If we throw dice once, the histogram will be very wrong (just a single bar)

> But if we repeat hundreds of times and average, we are gonna get very close
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https://www.goldsim.com/Web/Introduction/MonteCarlo/

Monte Carlo integration

o More formally, in MC integration we treat inputs x as RVs with pdf p(x)
> Our desired statistic y is the output and integrate over all possible x

= [ f@peod
X
o This integral is equivalent to an expectation

Y = Exepoo [f (0)] = f FOP(Odx

o This is an expectation (integral) we can approximate it by random sampling and
summation

Y = Explf (X)] = Z f(x;) = y,where x; is sampled from p(x)

o ¥ is an estimator because it only approximately estimates the value of y
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Toy example: estimating 7

o One can estimate the value of ™ numerically
> Only the upper right quadrant suffices

o We count points x, inside the circle (distance < 1 from (0,0) — red area)
> And points x; in the square (red and blue area)

. A~ X . .
> Our estimator y = == estimates circle quadrant area over square area
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o If we repeat another time this experiment
- We get a different 71
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https://en.wikipedia.org/wiki/Monte_Carlo_method

Estimator mean and variance

1
V= Exp)lf ()] = 52 f(x;) = y,where x; is sampled from p(x)
i

o QOur estimator is itself a random variable
— It has its own mean py = E[J] and variance Var[y] = IE[()A/ = uy)z]

o The higher the variance, the more the estimation fluctuates after every new

experiment

Disgtribution - Dice Roll (1000 Realizationg)

Distribution - Dice Roll (100 Realizations)
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https://www.goldsim.com/Web/Introduction/MonteCarlo/
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https://www.goldsim.com/Web/Introduction/MonteCarlo/

Estimator bias

o An estimator is unbiased it in expectation it matches the true statistic
E[y] =y
o Otherwise, biased with bias
bias = E[y] — y
o Better to have unbiased estimators

> Although in cases a bit of bias is ok
- Trade tractability for less accurate solutions (than what could be)

o The MC estimators are unbiased due to law of large numbers

° “As the number of identically distributed, randomly generated variables
increases, their sample mean (average) approaches their theoretical mean.”
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Standard error of MC estimator

o The MC estimator is a sample mean

1
Eypeo [F ()] % ) f(x0)

l

o The standard error of a sample mean is

o

Gf:\/ﬁ

o The more samples we take the less the estimator deviates
> But the deviation reduces only as vn
> With 4x more samples we only improve our error 2x
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To sum up

o If we want to compute a quantity y
> that we can express it as an integral of a function f over a probability space x

o that has a known and easy to sample pdf p(x)

> we can replace the exact but intractable computation with a tractable MC
estimator

y = x~p(x) f)] = Zf(x) xi~p(x)

o If we can’t translate the quantity as such an integral, we can’t estimate it

> For instance, we cannot use MC on the following because neither the
log p(x|z) nor the V,q,(z|x) are probability densities

Ty Es-qytetn 10gP(x12)] = | logp(xl2) V,a, (212)dz
Z
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Why do we care?

o In Deep Learning many computations are intractable
- Complex integrals that cannot be solved analytically

> Extremely expensive sums, e.g., summing over all 2°° possible binary latent
vectors z to obtain the marginal likelihood p(x) = )., p(x, z)

- We can make many of these computations tractable with MC estimators

o Examples of MC estimation
> Stochastic gradient descent can be seen as an MC estimator
> Sampling from a VAE is an MC estimator

- And many other operations involving integrations,
o generative models
> gradient estimation
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